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A PIEZOTHERMOELASTIC SHELL THEORY
APPLIED TO ACTIVE STRUCTURES

H. S. Tzou and R. V. Howard
Department of Mechanical Engineering
University of Kentucky
Lexington, Kentucky

ABSTRACT

"Smart" structures with integrated sensors, actuatots.
and contrcl electronics are of importance to next—g-neration
high—performance structural systems. Piezoelectnic materials
possess unique electromechanical properties, the direct and
converse effects. which can be used in sensor and actuator
applications. In this study, piezothermoelastic characteristics of
piezoelectric shell continua are studied and applications of the
theory to active structures in sensing and control are discussed.
A %enenc piezothermoelastic shell theory for thin piezoelectric
shells is derived usinr the linear piezoelectric theory and
Kirchhoff-Love assumptions. It shows that the dynamic
equations. in three pnincipal directions. inciude thermal induced
loads as well as conventional electric and mechanical loads. The
electnc membrane forces and moments induced by the converse
effect can be used to control the thermal and mechanical loads.
A simplification procedure, based on Lame’s parameters and
radii of curvatures. 15 proposed and applications of the theory to
1) a piezoelectric cylindnical shell and 2) a piezoelectric beam
are dernonstrated.

INTRODUCTION

Development of "smart" structures with integrated
sensors. actuators, and control electronics are crucial to
next—generation structural systems. New sensor/actuatot
materials are investigated and new technologies are developed 1n
recent years. Among those commonly used sensor/actuator
materials &e.g., piezoelectric materials. shape—~memory alloys,
electrorheological fluids, electrostrictive matenals.
magnetostrictive materials, etc.), piezoelectric materials possess
unique electromechanical properties (the direct and converse
piezoelectric effects) which can be respectively used in sensor
and actuator applications (Tzou & Fukuda. 1991: Tzou &
Anderson. 1992).

General theories derived from a generic shell continuum
can be applied to a broad class shell and non—shell structures
(Soedel, 1981). Chau (1986) proposed a vanational formulation
to describe the electromechanical equilibrium of completely
anisotropic piezoelectric shells. Rogacheva
(1982,1984a,1984b,1986) studied state equations and beundary
conditions of piezoelectric shells polanzed along coordinate
directions. Senik and Kudriavtsev (1980) formulated the
equations of motion for piezoelectric shells transversely

polarized.  Dokmeci (1978) derived a theory for coated
thermopiezoelectric laminae. Tzou and Gadre (1989) proposed a
generic theorv for muiti—iayered piezoelectric shell actuators
based on equivalent induced strains. Tzou (1991) denved a
general distributed sensing and control theory for a genenc cheil
continuum using piezoelectric thin layers. A thin piezoelectnic
solid finite element with three internal degrees of freedom was
formulated and applied to distributed semsing and control f
continua (Tzou & Tseng, 1991). Tzou and Zhong (1990) denv-:
a piezoelastic vibration theory for a hexagonal symmetncal
piezoelectric thick shell with three effective principal axes: and
this theory was applied to distributed shell convolving sensors
(Tzou & Zhong. 1991a) and active structural control (Tzou &
Zhong, 1991b). In this study, the piezoelastic shell vibration
theory is extended to include thermal induced effects due to
temperature variations. Piezothermoelastic behaviors of
piezoelectnic sheil continua are investigated.

Based on the linear piezoelectric theory ard
Kirchhoff~Love assumptions, a generc piezothermoelastic sheil
theory for thun piezoelectnc shells 1s denved first. A
simplification procedure, based on Lame’s parameters and radn
of curvatures. i1s proposed and applications of the theory to a
number of piezoelectnic continua (a piezoelectric cylindnical shell
and a piezoelectric beam) are demonstrated. Thermal effects to

- sensing and control are discussed.

DEFINITIONS

It is assumed that a genenc piezoelectric shell continuum
is defined 1n a curwilinear tri—orthogonal coordinate system in




which the a, and aj define the neutral surface and a4 defines the
normal. Figure 1. Siuce the she!l is thin the electnc field E4 15
considered across the shell thickness and the external electric
charge Q; 1s on the top and bottom surfaces only. [n this
section. assumptions and constitutive equations are defined.
(Note that this shell is genenc, which can be simplified to a
broad class of shell and non—shell geometries. Examples are
demonstrated in case studies.)

Neutes! Sertfeas

Fig.1 A piezoelectric shell continuum.

The constitutive equation of piezothermoelasticity is
defined as

{Ti:cS—{e‘E—Amp, 1
D} = [e|{S} + [¢]{E} + {p}Aatp, 2
where {T} is a stress vector; [c] is the elastic moduli matrix: {e]

is the piezoelectric comstant: {A} = [s|"{~}: [s] is the elastic
compliance matrix; {~} 1s the coefficient of thermal expansion;
{D} is the electric displacement vector: {S} 1s the mechanical
strain vector: (¢} is the dielectric constant matnx: {E} is the
electnc field vector; {p} is the pyroelectric constant: and Atp is
the temperature change. It is assumed that the
piezothermoelastic behaviors are instantly balanced in
mechanical, electric, and thermal fields and a quasi—static
approximation can be applied. For a piezoelectric shell with a
hexagonal symmetrical structure (class C6v= 6mm), the elastic

moduli [c] matrix is defined by

citci2¢,3 0 0 01
Ci2¢i1Ci3 O 0 0
fo1_ (Cizciacys D 0 0
‘ciJ}_ 0 0 0 cqq 0 0} {3)
3 0 0 0 ces O
[0 0 0 0 0 Ces

+

where ¢y = (Y/1-u?), cia = (Yufl-p?), ces = =112

={Y/2(1+u)] . where u is Poisson's ratio and Y 1s Young's
modulus. Note that cy3, ¢33, c44 are neglected for thin
piezoelectric shells with ineffective in—plane shear constants.)

Piezoelectric constant je] and dielectric constant [¢] matrices are
defined by

Fo o o9 09 a0
f,ljz; 0 0 0 ejsesui )
Fooleyenen 0 onoy
’,'.|| 0 ')
e l=t 0 ¢y o0 (3

fe, [ =1
Y Li) 0 €31 )

It 1s assumed that the piezoelectnc shell 1s thin as
rompared with the other two in-piane dimensions. The
transverse shear deformations and rotary inertias are neghgible
Thus. the dispiacement (L'l, 1 = 1,2) of any given point 1n the

shell continuum can be represented as a summation of the
component due to contraction/expansion of the neutral surface
and the component due to bending:

Uilayas,a3) = u(anaz) + asj(anm).
1=1.23, (6)

where ji denotes the bending angle and J; =) @y defines tne

distance measured from the neutral surface. Based on
Kirchhoff-Love assumptions, the transverse shear strains S.;
and S,3 are negligible. 1.e.. 513 = 0 and Sy; = ). Thus. the two
bending angles can be derived as:

g =-n__1 duy (N
'SR, " "X, Fay’
=L Gw (8)
TR, Xy 0m

Note that the transverse displacement U, is independent of
thickness, i.e., Us = uj{aj,uz) aud iie iransverse strain 333 can
thus be neglected, except where a concentrated load 1s applied.
The mechanical strains of the thin shell consist of an in—plane

membrane strain component S‘i‘j and an out—of—plane bending
component kij‘

Si =S + aszky, (9-a)
S22 = 8% + askas, (9-b)
Si2= 5% + askys . (9—)

The membrane and bending strains, S‘i’j and ki i are defined as
follows:

=g b e B, (10-a)
Sh= g+ fiL e 2 (10-b)
st = 2o X + B amlA) (10
kn=—_§—2322‘§%i—2§-‘2—7, (11-b)
o = 31558+ Ram A (-0

where s are defined in Eqs.(7) and (8). Note that there is no
shear strain on the a4 face such that there is no induced electnc
field in the a, and the a; directions. Considering the
prezothermoelastic constitutive equations and the stress—strain

relations of thin shells. one can define the mechanical stress TiJ
induced by the mecharucal strains. the electnc displacement Si

induced by strains. and the stress E, induced by electnc fields.

(12-a)
T =5, - S, (12-b)
Tu=0. (12—0)
To (12-d)

Ty =cuSe ~ ¢iSaz.

Ca8Sy7

W




:i'lg =.T23=1J. (12—)
§i=8:=9 (13-a)
Sy =enSu +euSa, {13-b)
Ey=E;= ek, (14-a)
Ey=eynk;, (14-b)
E¢=Es=Eg=0. (11=¢)

These terms will be used i1n conjunctions with the energy
expressions and the vanational equations.

FORCES AND MOMENTS

In this section, all forces and moments introduced by
mechanical. electric, and thermal effects are defined. These
foree and moment components will be used in Hamlton’s
equation when deriving the shell piezothermoelastic equations.
The mechanical membrane forces are

N = J 'fudaa = K(STi+uSia) . {15-a)
Q3

N%, =] Tadas = K{5%2+uS?) . (15-b)
a3

Nta= [ Todes = Np, = Hzidss,, (15—<)
251

m
where K = Yh/{1-u3) is the membrane suffness and N;j is the
total force acting on the ith face in the jth direction due to
mechanical effects. The mechanica: bending moments are

%= [ Tuadas = Dlkirukn) (16-a)
Qa3
M3 = J Taasday = Dkyp+uky) , (16-b)
[33] A ]
Mi= | Toades= M=, (16)
a3
My =M% =0, (16—d)
Yh? . , . L
where D = —v is the bending stiffness and M i; is the total

bending moment on the ith face in the jih direction due to the

- m
mechanical effects. The mechanical transverse shear forces Qi3

are
Ty = J Tidas, (17-a)
[0 4] A
Q% = J Tudas . (17-b)
Qa3
Using Eq.(2), one can derive the electric membrane forces:
NG = J e3Eadas
a,
— €3y - B hpyat, — 82489, ~ Siph (18-a)
€ € P ey “
N2 =J' enEiday
a3
= -%;-thq —l Lhpadtp - —J—(S’m-:m)h . (18-b)
Nfj2=10. (18—)
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where the first term 1s contributed by the converse effect. -ne
second term by the pyroelecinc effect (temperature). the tnird

tetm by the elastic strains via the direct effect  The siectzic
bending moments are
My, = J’ ey Ejordag
a3
e’ll k k L
—I-z— a( 1Kzl R
M$, = [ enEsadag
a3
3 2
=—%‘§;—;(k“+ku), R
My, = Mz = Ms; =0, RCE N

where M§; is the total electric bending moment on the ith face :n
the jth direction due to the converse piezoelecinc effect. The

electric transverse shear forces are Qf; = Q% = 0. There 1s no
shear forces in the aj direction due to the electnic effects. The

t
thermal membrane forces N;; are defined by

Nh = J z\lAtpdas = hAlAtp , ‘\20—30
as

Niy = J Asdtpday = hAzdt, . (20-b)
as

The thermal bending moments are

MY, = J Mdtpasday = 0, (21-3)
a3

M3, = I Mdtpayday = 0. (21-b)
a3

It is noted that the piezoelectric continua experience only
in—plane thermal expansion/contraction and no bending
moments in a uniformly distributed thermal field.

HAMILTON’S PRINCIPLE AND PIEZOTHERMOELASTIC
EQUATIONS

In this section, piezothermoelastic equations in three
principal directions will be derived using Hamuiiton's pninciple
and the vanational procedures. Hamilton’s principle gives
(Tzou & Zhong, 1990)

ty
J J 00U, = H(Sy;,Ej)] Ve
to’ V

t _
+j J T,6U; - Qbo)dSdt = 0, a,
ty’ S

where H is the electric enthalpy; p is the mass density: U, is the

displacement: E; is the electric field: t; is the surface traction in
the a; direction: Sy; is the strain on the kth face and in the Jth

direction: @ is the surface charge; and v is the electric potential
The electric fields m the curvilinear coordinate system are: 11 E,

rnw,/ma" 2) Ea = - xqraaRy) g0 20 3 B

= - -ai"— where R, and R, are the radii of curvatures. and A.

and A; are Lame’s parameters. These define the electnc fields
as the gradient of the electric potential. The electnc enthalpy 1s



ore

defined as H = 3{{S}*{T} — {E}*{D}] (Tzou & Zhong, 1990).

Using the piezothermoelastic constitutive equations, one can
denve

H = {S}'{c|{S} = {E}"[e]{S} - H{E}'[¢{E}
- {S}{Ar}atp - {E}*{p}ar, . (23)

Substituting the strain—stress expressions into the electric
enthalpy gives

H= Q('i'“Sm-l"::Sn+'i‘,gSn) —e31(S1+Sn)E;

—§(€33532) = (A8 1+ X3S0+ 43833+ paEq) Aty i24)

Substituting the electric enthalpy and all other energy
expressions 1nto Hamiton’s equation and collecting all like
terms in the vanational equation, one can derive the
piezothermoelastic and vibration equations in three principal
directions.

(ﬁ(N }:?'_\”QAZJ aﬂ;z;’\l] - (\'52'\52‘\52)57:—:

+ QAR+ N"l‘ng—‘ = phaa, 20 (25-2)

N®.A, (N ~N5,—N},) m .t 4 0
Aqhaad , AN AIENIIA _ (g -vg,-N) AL

2y,
+ Quigies wzgg—f = ohaA 5% (26-3)
m;Az '!31\1 _ . A1 Ag

ﬂ%‘él—l*' @ A(N'?x—NTx—-\E.;)—RT

- (VI-Ng-Np) A shA AT (27-a)

where h is the thickness of piezoelectric shell. The superscripts
m, e, and t respectively denote mechanical. electric, and thermal

components. Q%3 and Q%; in Eqs.(25)—{27) are defined by

o _ m. g
nA A, = AL \gfx)f\zl+a[¥&;~\1j |
- (M3-ME)JA2 + M0 (28)
Q7344 = Q[li lezl a[(M',r"-\g:!;;!r\ﬂ
-<.\m,-.u“>§;-; L MegAL (29)

Note that the the equation of motions include the mechanical
forces/moments (‘I“ /V[' ), electric forces/moments ( (NT /\I" )

and thermal induced forces (Ni‘i).

thermal expansions/contractions in three principal directions are
considered. It is observed that the umform temperature
vanation does not contribute any thermal moments. which wiil
not be the case in non-uniform temperature vanations. These
system equations can be solved. with the appropnate boundary
conditions and external excitations {mechamcal. electric. and/or
thermal), to describe the exact piezothermoelastic behaviors of
the piezoelectric shell.  In structural control applicauons. the
electric related components can be used as control forces and
moments to alter svstem charactenstics « Tzou & Zhong. 1991b).
Rearranging Egs. (25-27) and moving all electric related terms
(control terms) to the nght (Tzou. 1991'. une can derive

As discussed previously.

HNT,=NEA 0{’ LA _\,‘)ah
a 7 &y ga,

) 1(61(\1”)5«4 0‘“1%\] —(
TR\ da :

2
+ \1,,35_“ - .\";z%‘—;—pml.x Itu

- NTiAy) . 5:\7* 1 f(MT)A
é(aa.—“-"?faa—‘ "RTLWE)—

- (M) 33z ‘”’

5['30:\2} J(de-\‘)J =NY, )gf‘_l

AMT,A A(M3HA . 31\
+TL'TE.—21 'i?_l_’l (M7,

+ Mu-a—} + N1 A2 pha a2

- ANEA SO KLY

2L gaz
- (M?‘)Ha_z} , (26—bi

1 (3(MT)A,] | 33[M%,4] J1A,
AR da? £+ aaléazl (M,)a :

\® 9%2A 1 gafM®- 63[('\4‘ YA L
+ Yogada) T O, aalaa; oaz

Vn—“h)—ﬁ—
AA, 5~‘\ A2+ 1

== Nyt - N m[ﬁg%m-'

- T+ e - (M ](2.7 )

Note that electric related terms can be used as control terms to
actively change the shell dynamics. In addition, all terms with a
constant either 1/R, or 1/R, vanish if the radius of curvature is
infinite, e.g., flat plates (Tzou, 1991). The charge equation of
electrostatics of the piezoelectric shell is denved:

- (MT)gg; 'ac'x *““aa e
2
- (NyNp) R phAlAz%—i—

H(esSy+enSaa+ e 3E3+psdtp)A1A,] _
0, (30)
Jay

which implies that the quantity {e3(S,1+S22) + €33E3 + padty)
A A2 is equal to a constant and the thickness variation is equal
to zero. Note that this equation can be used to estimate an
electric output as functions of induced mechanical strains and
temperature vanauon. i.e.. Ey = — (1/€33)[e31(S11+S22)+psdtni.
in an open—circuit condition (Tzou, Zhong, 1991a).

BOUNDARY CONDITIONS

Boundary conditions are directly derived from the
vanational equation (Appendix). The boundary conditions are
defined by the surface traction forces and_ the surface charge.
(Note that other types of boundary forces and moments. such as
spring supported boundaries. fixed/hinged boundaries, etc.. can
also be accommodated.)

Mechanical Boundary Conditions
Mechamcal boundary conditions defined by either
force/moment or displacement/rotation are summarized 1in

Table 1 in which terms with a superscript * denote external
boundary components.
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———— e —n

"

Table 1. Mechanical boundary conditions.

Force B.C.'s Disp B C
NN Vb T Y noT
M, = My = Mg 3 = 3
Vis = Vi u = us
Q. = O-!:t 4y = ”:

where k = 1.2, the subscript t denotes the tangenual direcuon
{ie.. t =2 1f k=1 and vice versa). [t s observed that the
thermal induced membrane force only occurs :n the principal
direction. The mechamical shear stress resuitants are defined as

\" _Qm - 1 @.\Im: aﬂd
BT RI3TTX,Fa,
QT . | MT,
23 TUQ[ '
m
\m-1\:{—;— and

{31-a.b)

<%

N

w
It

o
i

m .
Qu=N%+ - (32-a.b)

Again, there is no electrically induced shear components because
the in—plane twisting effect 1s neglected. Note that usually only
either force boundary conditions or displacement boundary
conditions are selected for a given pPysxcal boundary condition.

For a totallv fixed edge at a; = a; !1.e.. no motion allowed),
the boundary conditions are: u; = U‘ Ji=0.u3 =10 and u; = 0.

For a totally free edge at a; = a2 , 1.e.. no external forces and
.

. : .m e

moments. the boundary conditions at a; = a2 are: N2z — N32

=0 M%,~M§ = 0. Vy3=0.and Ty, =0 In the case where
the surface trgction forces ti) are defined. the boundaty

membrane forces are

®*
Np= J tydasy, (33-a)
* 03
Ny = [ taday, (33-b)
E 3 aa
Niz= J tdas , (33—¢)
a
(33-d)

E ]
Ny = J tadag,
[o4]

L
where N i, is the total force on the ith face in the jth direction
due to the surface tractions. The induced boundary bending
-

moments M ; are

.\i.u = J thandas (34—a)
x o
Moy = S taadas . 134-~b)
m
Mia= | taedas, (34¢)
3
.
My = J tyaydas {34—d)

(04}

L ]
Accordingiy, the boundary transverse shear forces Q.. are

. ¥
Q”:le:‘( tuday . IS
as
. . i .
Q23=Q32=J t.ndas 2353~0-
@3

*
whete Q ., is the shear force cn the ith face in the jth directiin

Electric Boundary Condition

The electric boundary condition 1s defined as

L3
€Sy +e1S + ek + pidtp ~ Q3 = 1) 1381

It is observed that the total surface charge including the
mechancal. electric, and temperature effects 1s equal to the

*
external surface charge Q3.

Note that the piezothermoelastic equations for the thin
shell continuum and the boundary conditions can be reduced to
conventional elastic shell equations by neglecting all electric and
thermal coupling terms (Soedel, 1981). Again. transverse shear
deformation and rotatory inertia effects were not considered.

PIEZOTHERMOELECTRICITY OF SIMPLIFIED
GEOMETRIES

The piezothermoelastic theory derived above 1s for a
generic piezoelectric shell continuum exposed to mechamcal.
thermal, and electric fields. The generic shell was defined in a
curvilinear tri—orthogonal coordinate system defined by a;, a:.
and aj axes. The in—plane two axes define the neutral surface
experiencing only membrane effects. Each of the in—plane axs
is defined by 1ts radius of curvature, e.g., R for a, and R; for
az. In addition. there are two Lame’s parameters (A; and Ajj

defined by a fundomental form: (ds)? = A.° (da’

+ A22 (daz)2. For a given geometry, R, and R; can usually be
directly observed from the coordinate system and A, and A; can
be derived from the fundamental form. Substituting the four
parameters into the generic shell equation and simplifying them
accordingly, one can denive the ccrresponding piezothermoelastic
equations and boundary conditions for the geometry. In this
section, these procedures are wused to derive the
piezothermoelastic equations for 1) a piezoelectric cylindncal
shell and 2) a piezoelectric beam.

Example—1: Piezoelectric Cylindrical Shell

It is assumed that the cylindncal shell is defined in a
cylindrical coordinate system in which x axas (a;) 1s aligned with
the height and its radius of curvature R, = ». The second axis ¥
(@) defines the aircumferential direction which has a radius of
curvature R; = R Note that the x and § axes constitute the
neutral surface. The third axis ay 1s normal to the neutral
surface. Figure 2 illustrates the piezoelectnic cylinder and its
coordinate system. Piezothermoelastic effects of the cylindrical
shell will be discussed.
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Fig.2 A piezoelectric cylindrical shell.
The fundamental form of the cylinder 1s
(ds)2 = (1)%(dx)? + RAdO)? . 137)

Thus, A, =1. A; =R R, =2 R, =R ay =x. a7 =14
Substituting these parameters into the member/bending strain

expressions in Section—2. one can denve the membrane S9; and

bending strains ki; for the cylindnical shell. Thus. the total
strains are
511=%—-03§9{1 (38-a)
P&]Q 2
522 = {a—y- '?'Ll;] -+ —m'T- BT gv-g-l} (38“[))
a“ ] SRy B
Se=x THTJ’_‘R_L&._"MJ (38=¢)

Substituting the strains 1nto the stress equations and
consequently into the force/moment equations. one can dernve
the force/moment for the cylindrical shell:

n—f\| —ﬁ—[ +u:N . (39-a)
r 1 au ‘l
N, = K[ im;—+ u;} + u&—‘l . (39-b)
- 9
v, = K1 u)f “Llréuf] (39—)
" /32‘13 g4 9 ()2111‘:' ,
m = — mp— H —
\[“—D!L N + | ! (40-a)
ry [Pg 2 ,
ML= D hy 55 - G| - u et {10-b
AL a .
D(1-u) [ 1 [ 9 %3] .
M, = —_— : (40—}
I 3 mlj -
ou 1
- 63 : mx 1 Q’
““‘Zﬁ'h{ﬁx_f“r{?ﬁ ua |
_(—i-;-h [p;.}tp + Q;j s (41-a)
N%; = NY, (41-b)
YL = ey th3 T Ay ! “}u“_ J-‘m‘it {40=a}
MHETOY IR T T TR BT T 0T «me
ME; = MY, (42-b)
NG o= VA, (43—a
Nia = At (43-b)
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Note that the superscripts m. e. and @
electric. and thermal effects respectively

are for the mechamcai.
Substituting the force

and moment terms into the QT3 and Q% equations. one can

derive
_f D en?hdl Ay "Di(leuyr ey, 2hY
QL = [TF T T AT T TR ORT !
' azu‘;*{_ D _ey? h31 3, "
500x | R? iy [IRY Toxoor ‘
Qn < oD _ewi W1 gy e T
TR Ty 2R 0T T T RS
LoD enihd 'uy 7 D eyl hl Sty 5
X IR xT00 T TR T Ly IR T

Thus. the piezothermoelastic equations in three principa
directions for the piezoelectric cylindrical shell are derived.

A(NT~N§=NIR | V.z 91y, .
—“_3_“_. th-at—y . (401

-0 6?u
8[1;;‘:53 é“?r\i*"‘h + Q".l "phm_at_;’ (4”
AOLRI | A%l _ Ng-NgNp) = m2TY (a8)

It is observed that the thermal effects only contnibute to the
membrane forces. Remowving the electric and thermal related
terms, one can simplify the system equations to those
corresponding to an elastic cylindrical shell.

Using the charge boundary condition, one can define the
electric field strength E; at the location a3 above/below the
neutral surface as a function of the mechanical strains.
iemperature effect. and charge effect.

. 1 du 5“9 an
E3=—:—i;l X 4 1{3”—*'“3]_033;‘;_!
ay (T8 Fluy 3 3
v i - | RS- 149)

The electric field strength is contributed by the direct
piezoelectric effect (the first term), the pyroelecinc effect (the
second term), and the external surface charge (the third term
as defined in the constitutive equation. Note that the resulting

voltage is V3 = Eijda; in an open—circuit condition. The
g a

bending components, with a3 terms. vanish after the
integration. [t is also observed that the output signal has a
temperature related term 1aduced by the pyroelectric effect in
sensor applications. Note that it is assumed that the external
charge is zero in sensor applications (Tzou & Zhong, 1391a).

Example—2: Piezoelectric Beam

A beam 15 a specal case of an open nng with zero
curvature, R = ». [n this case, the @, axis 1s aligned with the
.ongitudinal direction of the cantilever beam. te., a; = x. The
second axis is in the width direction, a; = y. Figure 3 shows the
piezoelectnc beam. It is assumed that the beam only
experiences transverse oscillations, ay = z. Govermung equation
and piezothermoeiastic behaviors of the beam are discussed.

The fundamental form of the beam 1s

(ds)? = (1ii(dx)? + (1)¥(dy)? . 1501




lf

Fig.3 A piaoelec_tnc cantiever beam.

where dx and dy are infinitesimal distances 1n the x and ¥
directions respectively. Thus. A; =i A:=1. Ry=r. Ri =1
Since only the bending oscillation 15 considered. the membrane

strains are zeros. i.e.. S1; =0. S33 =0, and 3% =) ‘2The
41,

bending strain at the aj location 1s defined by ki = — —7—

and ko3 = 0. k2 = 0. The total strains at a3 location are

defined as

2 -

S“=-(13—g;l;3—,523=0.31:=0 {31)

Again, the beam experiences only transverse osaillation. The

membrane (longitudinal) force components are all zeros. 1.e.. N7,
=0, N%; = 0. N", = 0. The resultant moments are

A -
M%) = D(ky+ukys) = — D —= (32~a)
A2
M1 = Dikazrbuky) = - uD ~21 (52~b)
e, = _D‘.é:&‘_k\, =0 (52—)

Note that the moment M9, is primanly introduced by Poisson’s
effect. The electnc force and moment resultants due 10 the
external charge and temperature are

Nt = —h S Q- p-SL b, Ay, (53~a)
¢ €33
Ny = —h 3L Q- h-S3 g0, 33~b
%2 5 @i-h ey P3 =i (23~b)
- h3 e;ﬁ 02u3 4
\'l?l = 17 7Y ox ! (34 a)
~_h3 eyd Iy e
\Is'.’ = 17 €13 ox 2 134~b)
.\"{,:hA,Alp, 135-a)
Nk =h A At 155~b)
Substituting the system parameters and force/moment

resultants tnto the ongmnal shell equation. one can denve the
transverse piezothermoelastic equation

€1 2
£33 )

h3

1?

Aty

v,
T Jh

- " -

—;D*— 136)
L

For a beam with a rectangular cross—section (width b and
thickness h), the transverse equation »f motion 1s

21

ey gy

,?2\11

- ~YI - ‘—]—3—; x = Jhb_T]E-:—- 3T
bh3 .
where [ = I Note that the elasucity part has cne m re

term contributed by the piezoelectricity  The piezceiectr:icity
contributed elasucity 1s very small. about 1% for piezoelectric
polyvinvlidene Juonde polymer 1Tzou & Zhong, [29:a.
However. the temperature has no contnbuyticn 1; the transverse
osciilation because the thermal forces are pnimaniv .n -ne
neutral surface. neutral axis in this case  This prroelecinic »{fere
wiil contnibute to the tongitudinal oscillanion.

The electric feld strength at the location ay above helw
the neutral axis 1s defined by the external charge. temperature
induced pyrcelectric effect. and bending strain.

03 FQJ] Jy)
Ej = = 22 - —pjdty + = gy 1! 341
. ca = T G MR ’

N

However. the resuitant open—circuit voitage Vyis. in fact. _niv
r a2
contnbuted by the pyroelectnic effect | Q; =0 and | o
. '_h/‘2 Rk
62U1 3

as m—}da; = O.J

SUMMARY AND CONCLUSIONS

A linear piezothermoelastic theory of piezoelectnc shell
continua was proposed and piezothermoelastic phenomenz were
evaluated. It was assumed that the electnic, thermal. and elastic
fields are 1nstantaneously balanced and a quasi—static ¢ ndition
is used in the piezothermoelastic constitutive equaticns A
genenc theory for a piezoelectric thin shell coatiauur was
denved using Hamilton's pnnciple and Kirchhoif ove
assumptions  The goverming equations show close coupiing
effects among electnic, thermal, and elastic fields. Both
mechamcal and electric effects contnbute to the resuitant
forces/moments for the shell continuum. However, 1t was
observed that the thermal effect only comtnbutes to the
memobrane force resuitants, not the bending resultants due to a
umiform temperature assumption. Thermal induced bending
could appear 1f there 1s a non—uniform temperature distnbution.
Note that the electric force/moment resultants 1n the
piezothermoelastic equations can be used to control the sheil
contipuum.

The denived piezothermoelastic equations are genenc,
which can be simplified to a vanety of piezoelectnc continua if
two radii of curvatures and two Lame’s parameters are defined
This simpiification was demonstrated in three examples: i} a
cylindrical shell and 2) a beam. Detailed piezothermoelastic
phenomena of each geometry were discussed along with the
denved governing equations. The same procedure can be
applied to a vanety of other piezoelectric continua and so as the
piezothermoelasticitv evaluated. Note that the theory was
derived based on linear assumptions and the matenal
nonlineanity was not considered.  However. these matenal
constants (e.g . piezoelectric constants. elastic constants. etc )
could vary when temperature vanation is significant. Thus,
extending the present theory to encompass the matenal
nonlineanty would further enhance the theoretical development
and understand more about the complicated behaviors of
piezoelectric  sensors/actuators operating 1n  non—ideal
environments.
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